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Blocs avec frottement

NOM :

PRENOM :

N° SCIPER :

SECTION: Mathématiques
SALLE:

L’exercice a4 rendre comporte un énoncé illustré et détaillé sur la page de gauche et des
questions sur la page de droite. Les développements mathématiques et physiques sont a
effectuer sur les pages quadrillées.

Consignes

e Le formulaire de ’examen (1 page A4 recto-verso) est autorisé.

e [’utilisation de tout appareil électronique est interdite.

e Les réponses sont a retranscrire sur les pointillés sous chaque question dans I’espace réservé a cet
effet.

e Utiliser un stylo a encre noir ou bleu foncé (éviter d’utiliser un crayon) et effacer proprement
avec du correcteur blanc si nécessaire.

e Les feuilles de papier brouillon ne seront pas corrigées.
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1. Blocs avec frottement
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Un bloc @, considéré comme un point matériel de masse mq, est posé sur un plan horizontal et attaché a

un fil inextensible de masse négligeable qui passe au-dessus d’une poulie de masse négligeable. Un bloc @,
considéré comme un point matériel de masse mso, est suspendu & l'autre extrémité du fil. Le fil se déplace
avec le mouvement de rotation propre de la poulie sans glisser. Le frottement sec entre le bloc @ et le
plan horizontal est caractérisé par un coefficient de frottement statique ug et un coefficient de frottement
cinétique p.. Le frottement visqueux en régime laminaire entre le bloc @ et 'air est caractérisé par le
coefficient b > 0. Le temps caractéristique d’amortissement du systéme par frottement visqueux est,

mi + mo

b

T =

Pour décrire la dynamique du systéme, on choisit un repére cartésien (O, &, 9, 2) o le vecteur unitaire &
est orienté le long de ’axe horizontal vers la droite, le vecteur unitaire ¢ est orienté le long de ’axe vertical

vers le bas et le vecteur unitaire 2 entre dans le plan vertical ci-dessus.

Les réponses doivent étre exprimées en termes des grandeurs scalaires données ci-dessus, des coordonnées
cartésiennes x1, T2 Y1, Y2, 21 et z2 des deux blocs et de leurs dérivées temporelles, des vecteurs de base &,
9 et 2, de la norme du champ gravitationnel g et des grandeurs scalaires spécifiées dans 1’énoncé de chaque
question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suivantes
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1. Déterminer les équations scalaires du mouvement de chaque bloc compte tenu de la tension dans le fil.

Les vecteurs accélérations des blocs @ et @ s’écrivent,
a; = {,'E'1 z et as = yg ’g (1)

Les forces extérieures exercées sur le bloc @ en mouvement sont son poids Py, la force de réaction nor-
male du plan [Ny, la tension — T'; et la force de frottement cinétique F'y 1 qui s’écrivent en coordonnées
cartésiennes comme,

Pi=mig=mg9y et Ni=—-Nig

2
T1:T11i3 et Fj;l:—[tchiil ()

La loi du mouvement du bloc @ s’écrit,

ZFth:P1+N1+T1+F}C71:mlal (3)

En substituant les expressions de 'accélération (1) et des forces extérieures (2) dans la loi vectorielle
du mouvement (3) du bloc @, et en la projetant le long des lignes de coordonnées cartésiennes dans
le plan vertical, on obtient les deux équations scalaires suivantes,

@ selon & : Tl — M N1 = mli’l (4)
@ selon g: mig— N1 =0 (5)

On peut s’affranchir de la norme de la force de réaction normale N en combinant les équations (4)
et (5). Ainsi, ’équation du mouvement du bloc @ devient,

@ selon &: T — pemig=mii; (6)

Les forces extérieures exercées sur le bloc @ en mouvement sont son poids P, la tension —T'5 et la
force de frottement visqueux F f,2 qui s’écrivent en coordonnées cartésiennes comme,

Py =mag =magy et T,=-15

o (7)
Fio=—bvy=—bjg

La loi du mouvement du bloc @ s’écrit,

ZF;Xt:PQ'i‘TQ‘FFf’Q:mQaQ (8)

En substituant les expressions de 'accélération (1) et des forces extérieures (7) dans la loi vectorielle
du mouvement (8) du bloc @, et en la projetant le long de la ligne de coordonnée verticale, on obtient
I’équation scalaire suivante,

@ selon §: mag— To — bija = maij (9)

2. Donner la condition liant les dérivées temporelles secondes des coordonnées cartésiennes des blocs @
et @
Pour un fil inextensible, la norme du vecteur accélération a; du bloc @ est égale a la norme du vecteur
accélération as du bloc @ Compte tenu des équations (1), cette condition s’écrit,
lai]] = [laz||  ainsi &y =g (10)

ou 21 > 0 et g5 > 0.
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3. Donner la condition liant les normes des tensions dans le fil.

Comme la masse de la poulie est négligeable, elle dévie uniquement le fil sans affecter autrement la
dynamique du systéme. Par conséquent, I'opposé des tensions —T'; et —T's exercées par le fil sur la
poulie ont des normes égales,

|| — T1|| = || — T2|| ainsi T1 = T2 (11)
4. Déterminer I’équation du mouvement du systéme formé des deux blocs.

Compte tenu de la condition (10), ’équation du mouvement (6) du bloc @ devient,

T — pemi g =maio (12)
La somme des équations du mouvement (9) et (12) s’écrit,

mag — pemi g+ T — To — bya = (my + m2) fa (13)

Compte tenu de la condition sur les tensions (11) et du coefficient de frottement visqueux,

b:m1—|—m2 (14)

T

on obtient I’équation du mouvement du systéme formé des deux blocs,

1 . ..
(ma — pemy) g — (my +mg) ~ 2= (m1 4 ma) ijo (15)

5. Déterminer I’évolution temporelle g5 (t) de la coordonnée verticale de la vitesse du bloc @ compte
tenu du fait qu’il est initialement immobile, c’est-a-dire g2 (0) = 0.

L’équation du mouvement du mouvement (15) est remise sous la forme suivante,

.. 1/. Mo — e M1
Y2 T <y2 ( my + me > gT) ( )

A Taide du changement de variable,

Us = Uo — ma — e gr oil Uy = o (17)
mi —‘y—TI’Lg

I’équation du mouvement (16) se réduit a,

1 dus
o — — 5 o = ——2 18
U - (15) ou (5] dt ( )
qui peut étre remise en forme comme,
dus (t 1
wl) 1, (19)
uz (t) T

L’intégration de I’équation différentielle (19) du temps initial ¢ = 0 au temps ¢ s’écrit formellement,

usa(t) 14l 1 t
/ d’u//2 (f ) —_ _ = / dt/ (20)
u2(0) U2 (t ) T Jo

La solution de I’équation intégrale (20) est,

(m) = @

d’ot1 'on tire I’évolution temporelle de la variable,

t

uy (£) = ug (0) exp ( ) (22)

T
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Compte tenu de la condition initiale g2 (0) = 0, du changement de variable (17) et I’équation (22), on
obtient alors I’évolution temporelle g5 (¢) de la coordonnée verticale de la vitesse du bloc @,

. Mo — flc My t mao — fle M
£ = — _ =z e pen 23
Yz (1) (m1+m2 >gTeXp< T)+(m1+m2 >gT (23)
. Déterminer la vitesse scalaire limite v o, de chute du bloc @

Solution 1 : En appliquant la définition de la vitesse limite a I’équation d’évolution temporelle (23)
de la coordonnée verticale du bloc @, on obtient,

. . mo — e MMy
Voo = lim t)y= — | g7 24

200 t—>ooy2() ( m1+m2 )g ( )
Solution 2 : Dans la limite ou le bloc @ atteint sa vitesse scalaire limite de chute vy o = 92,
son accélération est nulle, c’est-a-dire o = 0. Ainsi, compte tenu du coefficient de frottement (14),
léquation du mouvement (15) se réduit dans cette limite a,

mi + mo
(o — prema) g — " E2 4 <0 (25)
et la vitesse scalaire limite de chute s’écrit,
mo — ey
= — 26
o = (ML) (26)

. Déterminer la condition pour que le systéme formé des deux blocs et de la poulie reste immobile
(c’est-a~dire en régime statique).
La force de frottement statique exercée par le plan sur le bloc @ s’écrit,

Fii=—Fp & (27)
La condition imposée pour que le bloc @ soit en régime de frottement statique est,

Fri < ps Ny (28)
A Déquilibre, la loi du mouvement (3) du bloc @ se réduit a,

Y F™ =P +Ni+T+F; =0 (29)

Compte tenu des forces extérieures (2) et (27), les projections de I’équation d’équilibre (29) le long des
lignes de coordonnées cartésiennes dans le plan vertical s’écrivent,

@ selon &: —Fp1+T1=0 (30)

@ selon g: mig— N1 =0 (31)
Compte tenu des équations (30) et (31), la condition (28) devient,

Ty < psmag (32)
A Téquilibre, la loi du mouvement (8) du bloc @ se réduit a,

Y PP =Py +T,=0 (33)

Compte tenu des forces extérieures (7) et (27), les projections de I'équation d’équilibre (33) le long de
la ligne de coordonnée verticale s’écrit,

@ selon g: mog— T =0 (34)
Compte tenu des équations (11) et (34), on obtient,
Ty =Ty =mag (35)

En substituant I’équation (35) dans la condition (32), celle-ci devient,

Mo < fbg My (36)



